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1. Introduction

In the representation theory of algebras, the celebrated Nakayama conjecture (NC 
for short) states that an Artin algebra A is self-injective provided that all terms in a 
minimal injective resolution of A are projective. In [24], Müller restated the Nakayama 
conjecture and proved that the Nakayama conjecture holds for all algebras if and only if 
for each algebra A, a generator-cogenerator M of A with ExtiA(M, M) vanishing for all 
i > 0 is necessarily projective. In [3], Auslander and Reiten proposed a conjecture which 
is an analogue of Müller’s theorem.

Auslander-Reiten conjecture (ARC): A generator (may not be a cogenerator) M of A
with ExtiA(M, M) = 0 for all i > 0 must be projective, or equivalently, a finitely generated 
A-module X satisfying ExtiA(X, X ⊕A) = 0 for all i > 0 is necessarily projective.

ARC is closely connected with NC and several famous conjectures in the representa-
tion theory of Artin algebras. For example, let A be an Artin algebra.

Finitistic dimension conjecture (FDC): The finitistic dimension of A (the supremum 
of the projective dimensions of finitely generated A-modules with finite projective dimen-
sion) is finite.

Strong Nakayama conjecture (SNC): For each nonzero finitely generated A-module 
M , there is an integer n � 0 such that ExtnA(M, A) �= 0 [13].

Generalized Nakayama conjecture (GNC): Every indecomposable injective A-module 
occurs as a direct summand of a term in a minimal injective resolution of AA [3].

All these conjectures are widely open. The relationship among them is stated as 
follows. For more details, we refer the readers to [3], [40, Theorem 3.4.3].

• For an individual algebra, FDC ⇒ SNC ⇒ GNC ⇒ NC.
• GNC holds for all Artin algebras if and only if so does ARC for all Artin algebras.

Thus, FDC holds for all algebras implies that ARC holds for all algebras. However, the 
implication is unknown for individual algebras. For example, the finitistic dimension 
conjecture is known to be true for self-injective algebras, but ARC is still open for these 
algebras [20, Theorem 3.4].

ARC is known to be true for several special classes of algebras. For example, algebras 
of finite representation type, torsionless-finite algebras, symmetric biserial algebras, al-
gebras with radical square zero, local algebras with radical cube zero [3,38,39]. ARC also 
holds for an algebra satisfying the (Fg) condition [16]. These algebras include group al-
gebras of finite groups [8], finite group schemes [17], commutative complete intersections 
[4], quantum complete intersections where qi,j are roots of unity [27], and so on.

This article is devoted to studying ARC in the context of singularity categories of 
algebras. The singularity category Dsg(A) of an algebra A is defined as the Verdier 
quotient
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Dsg(A) = Db(A-mod)/K b(A-proj)

of the bounded derived category Db(A-mod) by the subcategory of bounded complexes 
of projective modules [7]. Two algebras are called singularly equivalent if their singularity 
categories are equivalent as triangulated categories.

It is well-known that there is a full embedding

⊥A ↪→ Dsg(A)

sending a module to the corresponding stalk complex concentrated in degree zero, where

⊥A := {X ∈ A-mod|ExtiA(X,A) = 0 for all i > 0}

and ⊥A is the additive quotient category of ⊥A modulo projective modules. The embed-
ding induces an isomorphism

ExtiA(X,Y ) ∼= HomDsg(A)(X,Y [i])

for each X, Y ∈ ⊥A and for each i > 0. Here, we write Y [i] for the object obtained from 
Y by applying the shift functor i times.

ARC holds for A precisely means that ⊥A has no nonzero objects X with 
ExtiA(X, X) = 0 for all positive i. Recall that an object T in a triangulated cate-
gory T is presilting if HomT (T, T [i]) = 0 for all i > 0. As a consequence, if Dsg(A)
has no nonzero presilting objects, then ARC holds for A. Therefore, it is natural to 
conjecture: The singularity category of any algebra contains no nonzero presilting ob-
jects. We call this singular presilting conjecture (SPC). Observe that SPC implies ARC, 
and the converse is also true if A is a Gorenstein algebra — the above embedding is 
an equivalence in this case. Hence SPC might be used as a tool to study ARC. Obvi-
ously, SPC is invariant under singular equivalences. This implies that ARC is preserved 
under singular equivalences between Gorenstein algebras. One can ask a more general 
question.

Question: Do singular equivalences preserve ARC?

If two algebras are derived equivalent (they are certainly also singularly equivalent), 
then the answer to the above question is yes. This was proved by Wei in [37] (see [30,15]
for derived invariance of a generalized version of ARC). In this paper, we shall consider 
singular equivalences induced by adjoint pairs and show that many singular equivalences 
do preserve ARC.

Our first result is the following, which is listed in Theorem 3.6.
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Theorem 1.1. Let A, B be two algebras. Suppose that there are triangle functors

D(B-Mod) G

K

L

D(A-Mod)

H

F

between the unbounded derived categories of A and B such that (L, F ), (F, G), (G, H)
and (H, K) are all adjoint pairs. Assume that G induces a singular equivalence, and that 
H preserves bounded complexes of projective modules. Then the ARC holds for A if and 
only if it holds for B.

Applying Theorem 1.1 to ladders (see Section 3), we get the following theorem (see 
Theorem 3.8).

Theorem 1.2. Let A, B and C be three algebras, and there is a ladder of height 3

D(B-Mod)
i∗

i?

D(A-Mod)i!

i∗

j∗

j?

D(C-Mod)j∗

j!

.

Then ARC holds for A implies that it holds for B. Moreover, if the ladder can be com-
pleted to a ladder of height 4, then the following statements hold.

(1) If the ARC holds for A, then it holds for B and C;
(2) If C (resp. B) has finite global dimension, then ARC holds for A if and only if it 

holds for B (resp. C).

Theorem 1.1 can also be applied to singular equivalences induced by tensor functors. 
The following result is listed in Theorem 4.1.

Theorem 1.3. Suppose that X• is a B-A-bimodules complex which is perfect over B and 
A, and assume Y • := RHomB(X•, B) is a perfect complex of A-modules. If X• ⊗L

A −
induces a singular equivalence between A and B, then ARC holds for B implies that it 
holds for A. If moreover RHomA(Y •, A) ∈ K b(B-proj), then ARC holds for A if and 
only if it holds for B.

Our result can be applied to give several reduction methods on ARC. Let A be a 
lower triangular matrix, and e be an idempotent. Under certain conditions, A satisfies 
ARC if and only if so does eAe (see Corollary 3.9). As an immediate application, ARC is 
preserved under one-point (co-)extensions (see Example 5.3). Thus, for quiver algebras, 
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ARC is invariant when we remove a sink or a source. Let AeA be a heredity ideal of A
such that eA has finite injective dimension as a right A-module. We also show that ARC 
holds for A if and only if it holds for A/AeA (see Example 5.4).

This paper is organized as follows. We collect necessary facts in Section 2, and in-
vestigate ARC under singular equivalences induced by adjoint pairs and recollements in 
Sections 3 and 4. Some examples are given in the final section.

2. Preliminaries

In this section we fix our notation and recall some basic facts for later proofs.
As we mentioned at the beginning of the previous section, all algebras are finite 

dimensional algebras over a fixed field k. Let A be such an algebra. The opposite algebra 
of A is denoted by Aop and the enveloping algebra A ⊗k Aop is denoted by Ae. We 
identify A-A-bimodules with left Ae-modules. We denote by A-Mod the category of left 
A-modules, by A-mod its subcategory consisting of finitely generated left A-modules, 
by A-Proj its subcategory consisting of projective left A-modules, and by A-proj its 
subcategory consisting of finitely generated projective left A-modules.

Let X be a full subcategory of A-mod, then we define

⊥X := {Y ∈ A-mod | ExtiA(Y,X) = 0,∀i > 0, X ∈ X }.

The corresponding additive quotient modulo projectives is denoted by ⊥X . An A-module 
M contained in ⊥M is called self-orthogonal.

For an algebra A, the unbounded derived category of A-Mod is denoted by D(A-Mod). 
As usual, we write Db(A-Mod) (resp. Db(A-mod)) for the full subcategory consisting of 
bounded complexes of left A-modules (resp. finitely generated left A-modules), and write 
K b(A-Proj) (resp. K b(A-proj)) for the full subcategory consisting of bounded complexes 
of projective modules (resp. finitely generated projective modules).

It is well-known that the above mentioned unbounded and bounded derived cate-
gories are all triangulated categories. We refer to Happel’s book [19] for basic results on 
triangulated categories.

The following result is well-known. Here, we give a proof for readers’ convenience; 
compare [33, Theorem 2.1] and [2, Proposition 5.1.7].

Lemma 2.1. Let A be an abelian category and P be the full subcategory of projective 
objects. Then the canonical functor

ι : ⊥P −→ Db(A)/K b(P)

is fully faithful.
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Proof. A morphism X• −→ Y • in Db(A)/K b(P) is denoted by a fraction as−1 : X• s←−
Z• a−→ Y •, where a and s are morphisms in Db(A), and if Z• s−→ X• −→ U• −→ Z•[1]
is a triangle in Db(A), then U• ∈ K b(P). A morphism s′ in Db(A) with this property 

will be denoted by 
s′=⇒.

First, we show that ι is a full functor. Let f : X −→ Y be a morphism in ⊥P. Then 

ι(f) is the morphism X
1X⇐= X

f−→ Y . We need to show that each morphism from 
X to Y in Db(A)/K b(P) is of this form. Let X s⇐= U• a−→ Y be a morphism in 
Db(A)/K b(P). By definition, there is a triangle U• s−→ X

g−→ P • −→ U•[1] in Db(A)
with P • ∈ K b(P). Consider the triangle in Db(A)

σ≥0P
• α−→ P • β−→ σ<0P

• −→ (σ≥0P
•)[1].

Here σ denotes the brutal truncation. Since P • belongs to K b(P) and X ∈ ⊥P, by [21, 
Proposition 3.1] we have

HomDb(A)(X,σ<0P
•) ∼= HomK b(A)(X,σ<0P

•) = 0.

It follows that βg = 0, and therefore g factorizes through α. Hence we can form the 
following commutative diagram in Db(A) with rows being triangles.

V • h

r

X σ≥0P
• w

α

V •[1]

r[1]

U• s
X

g
P • U•[1].

Since HomDb(A)((σ≥0P
•)[−1], Y ) ∼= HomK b(A)((σ≥0P

•)[−1], Y ) = 0, the morphism 
ar(w[−1]) = 0, and hence there is some morphism f : X −→ Y in Db(A) such that 
ar = fh. Then we have the following commutative diagram in Db(A)

V •
hr

U•

s

a

X1X

f

X Y,

which means that the morphisms X s⇐= U• a−→ Y and X
1X⇐= X

f−→ Y in 
Db(A)/K b(P) are equal. Hence ι is a full functor.

Suppose that f : X −→ Y is a morphism in A such that ι(f) = 0. That is, the 

morphisms X 1X⇐= X
0−→ Y and X

1X⇐= X
f−→ Y are equal in Db(A)/K b(P). Then 

there is a morphism W • s=⇒ X such that fs = 0 in Db(A). Embedding s into a triangle 
in Db(A), we see that f factorizes in Db(A) through a complex in K b(P). Since X ∈ ⊥P
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and P consists of projective objects in A, it follows that ExtiA(X, P ) = 0 = ExtiA(P, Y )
for all P ∈ P and all i > 0. By [21, Corollary 3.4], f factorizes through an object in P, 
that is, f = 0 in the stable category. Hence the functor ι is faithful. �

An object X in a triangulated category is called presilting if Hom(X, X[n]) = 0 for 
all n > 0. By Lemma 2.1, there is a full embedding

⊥A ↪→ Dsg(A)

which induces a natural isomorphism

ExtiA(X,Y ) ∼= HomA(Ωi(X), Y ) ∼= HomDsg(A)(X,Y [i])

for each i > 0; see [34, Lemma 5.2] for example. Thus, every self-orthogonal object in 
⊥A is a presilting object in Dsg(A).

Let X• be a complex of (finitely generated) A-modules. The i-th homology of X• is 
denoted by Hi(X•). For a right A-module M and a left A-module N , denote by M⊗AX

•

and HomA(X•, N) the complexes

· · · → M ⊗A Xi 1⊗di

−→ M ⊗A Xi+1 → · · ·

and

· · · → HomA(Xi+1, N) HomA(di,N)−→ HomA(Xi, N) → · · ·

respectively. Note that the i-th term of HomA(X•, N) is HomA(X−i, N) for all i ∈ Z.

The following will be useful in our later discussion.

Lemma 2.2 ([25, Theorem 4.1 and 5.1] and [1, Lemma 2.7]). Let A and B be two algebras, 
and F : D(A-Mod) → D(B-Mod) be a triangle functor with a right adjoint G. Consider 
the following conditions

(1) F preserves K b(proj);
(2) G preserves coproducts;
(3) G admits a right adjoint;
(4) G preserves Db(mod);
(5) G preserves Db(Mod).
Then we have (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5).

3. Singular equivalences induced by adjoint tuples

In this section, we consider ARC and singular equivalences induced by adjoint pairs. 
First, let us recall from [21] the definition of non-negative functors.
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Definition 3.1 ([21, Definition 4.1]). Let A and B be two algebras. A triangle functor

G : Db(B-Mod) → Db(A-Mod)

is called non-negative if G satisfies the following two conditions:

(1) G(X) is isomorphic to a complex with zero homology in all negative degrees for all 
X ∈ B-Mod;

(2) G(P ) is isomorphic to a complex in K b(A-Proj) with zero terms in all negative 
degrees for all P ∈ B-Proj.

The following proposition taken from [21] on non-negative functors will be crucial for 
our discussion.

Proposition 3.2 ([21, Proposition 4.8 and 5.2]). Let G : Db(B-Mod) → Db(A-Mod) be a 
non-negative triangle functor admitting a right adjoint H which preserves K b(Proj). If 
G restricts to Db(mod) and K b(proj), then there is a commutative diagram

⊥B
G

ιB

⊥A

ιA

Dsg(B) G̃
Dsg(A),

(3.1)

where ιB and ιA are natural embeddings.

In certain cases, the above commutative diagram indicates the relationship between 
the validity of ARC for A and B, as is shown in the following lemma.

Lemma 3.3. Assume that we have the above commutative diagram (3.1). If G̃ is fully 
faithful, then ARC holds for A implies that it holds for B.

Proof. Let X be a self-orthogonal object in ⊥B. Since the embedding ιB takes self-
orthogonal objects to presilting objects, the object ιB(X) and thus G̃ιB(X) is presilting. 
By the commutative diagram (3.1), one has ιAḠ(X) = G̃ιB(X). It follows that Ḡ(X)
is self-orthogonal in ⊥A. By assumption ARC holds for A. This implies that Ḡ(X) is 
isomorphic to the zero object in ⊥A. Since G̃ is fully faithful, by the commutative diagram 
(3.1), one can see that Ḡ is fully faithful. Hence X must be isomorphic to the zero object 
in ⊥B.

Altogether, we have shown that ⊥B does not contain any nonzero self-orthogonal 
objects, that is, ARC holds for B. �

Lemma 3.3 will serve as our main idea to study the relationship between singular 
equivalences and ARC. However, at this stage, we don’t know how to get non-negative 
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functors that induce singular equivalences or fully faithful functors between singularity 
categories.

If G is a derived equivalence, then G[i] is non-negative for some integer i. In gen-
eral, the following lemma shows that adjoint pairs of triangle functors between derived 
categories may give rise to non-negative functors.

Lemma 3.4. Let

D(B-Mod) G D(A-Mod)
F

be an adjoint pair with both F and G preserving K b(proj). Then, up to shifts, G restricts 
to a non-negative functor from Db(B-Mod) to Db(A-Mod).

Proof. Since F preserves K b(proj), it follows from Lemma 2.2 that G preserves Db(Mod)
and coproducts.

By assumption both G(B) and F (A) are bounded complexes of finitely generated 
projectives. Assume that F (A) and G(B) are of the following form:

G(B) : · · · → 0 → P−m → · · · → P 0 → P 1 → · · · → Pn → 0 → · · · ,

F (A) : · · · → 0 → Q−r → · · · → Q0 → Q1 → · · · → Qs → 0 → · · · .

Set t = max{m, s}, F̂ = F [t] and Ĝ = G[−t]. Then Ĝ(B) = G(B)[−t] is a complex in 
K b(A-proj) with zero terms in all negative degrees, and F̂ (A) = F (A)[t] is a complex 
in K b(B-proj) with zero terms in all positive degrees. Since Ĝ preserves coproducts, the 
complex Ĝ(P ) is isomorphic to a complex in K b(A-Proj) with zero terms in all negative 
degrees for all P ∈ B-Proj.

For any X ∈ B-Mod and any integer i, we have isomorphisms

Hi(Ĝ(X)) ∼= HomDb(A-Mod)(A, Ĝ(X)[i])
∼= HomDb(B-Mod)(F̂ (A), X[i])
∼= HomK b(B-Mod)(F̂ (A), X[i]),

where the second isomorphism follows from the adjointness of F̂ and Ĝ. Therefore, 
Hi(Ĝ(X)) = 0 for any i < 0, that is, Ĝ(X) has no homology in negative degrees. This 
proves that Ĝ is non-negative. �
Corollary 3.5. Suppose that (F, G, H) in the following diagram is an adjoint triple of 
triangulated functors.
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D(B-Mod) G
D(A-Mod)

H

F

Assume that G preserves K b(proj) and H preserves K b(Proj). Then we have the com-
mutative diagram (3.1). Moreover, if G induces a fully faithful functor between the 
singularity categories of B and A, then ARC holds for A implies that it holds for B.

Proof. Since G has a right adjoint H, by Lemma 2.2, we have that F preserves K b(proj)
and G preserves Db(mod). It follows from Lemma 3.4 that, up to shifts, G restricts to a 
non-negative functor from Db(B-Mod) to Db(A-Mod). Since G preserves Db(mod) and 
K b(proj), one gets the commutative diagram (3.1) by Proposition 3.2. Moreover, the 
statement follows from Lemma 3.3. �

A sequence of functors (F1, F2, . . . , Fr) between two categories is called an adjoint 
tuple if (Fi, Fi+1) is an adjoint pair for all i = 1, . . . , r − 1.

Theorem 3.6. Let A and B be two algebras. Suppose that the sequence (F1, F2, F3, F4, F5)
of triangle functors in the following diagram is an adjoint tuple.

D(B-Mod)
F3

F5

F1

D(A-Mod)

F4

F2

Assume that F3 induces a singular equivalence between B and A. If F4 preserves 
K b(Proj), then ARC holds for A if and only if it holds for B.

Proof. By Lemma 2.2, the functors F1, F2 and F3 preserve K b(proj). Now consider 
the adjoint triple (F2, F3, F4). Since F4 preserves K b(Proj) and F3 induces a singular 
equivalence, by Corollary 3.5, ARC holds for A implies that it holds for B.

Conversely, consider the adjoint triple (F1, F2, F3). By Lemma 2.2, the functors F2

and F3 preserve both K b(proj) and Db(mod). Thus, F2 and F3 induce an adjoint pair 
between the singularity categories of A and B. Since F3 induces a singular equivalence, 
so does F2. Moreover F3 also preserves K b(Proj) since it preserves both K b(proj) and 
coproducts. Hence, applying Corollary 3.5 to the adjoint triple (F1, F2, F3), we conclude 
that ARC holds for B implies that it holds for A. �
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Corollary 3.7. Let A and B be two algebras. Suppose that the sequence (F1, . . . , F6) of 
triangle functors in the following diagram is an adjoint tuple.

D(B-Mod)
F3

F5

F1

D(A-Mod)

F4

F2

F6

Assume that F3 induces a singular equivalence between B and A. Then ARC holds for 
A if and only if it holds for B.

Proof. According to Theorem 3.6, it suffices to prove that F4 preserves K b(Proj). How-
ever, this follows easily from the fact that F4 preserves K b(proj) and coproducts by 
Lemma 2.2. �

An immediate consequence of Corollary 3.7 is that derived equivalences preserve ARC, 
which was proved by Wei in [37]. Actually, a derived equivalence F and its quasi-inverse 
F−1 give rise to an adjoint tuple (F, F−1, F, F−1, . . .) of arbitrary length, and F induces 
a singular equivalence.

Adjoint tuples typically occur in recollements and ladders.

Let T1, T and T2 be triangulated categories. A recollement [5] of T relative to T1 and 
T2 is a diagram

T1 i∗=i! T
i∗

i!

j!=j∗ T2

j!

j∗

of triangulated categories and triangle functors such that
(1) (i∗, i∗, i!), (j!, j!, j∗) are adjoint triples of triangle functors;
(2) i∗, j! and j∗ are full embeddings;
(3) j!i∗ = 0 (and thus also i!j∗ = 0 and i∗j! = 0);
(4) for each X ∈ T , there are triangles

j!j
!X → X → i∗i

∗X →
i!i

!X → X → j∗j∗X → ,

where the maps are given by adjunctions.

A ladder [1] is a finite or infinite diagram of triangulated categories and triangle 
functors
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T1 T

...

...

T2

...

...

such that any three consecutive rows form a recollement. The height of a ladder is the 
number of recollements contained in it (counted with multiplicities).

Now, we are ready to apply our discussion to ladders.

Theorem 3.8. Suppose that A, B and C are algebras, and there is a ladder of height 3

D(B-Mod)
i∗

i?

D(A-Mod)i!

i∗

j∗

j?

D(C-Mod)j∗

j!

.

Then ARC holds for A implies that it holds for B. Moreover, if the ladder can be com-
pleted to a ladder of height 4, then the following statements hold.

(1). If the ARC holds for A, then it holds for B and C;
(2). i∗ (resp. j∗) induces a singular equivalence if and only if C (resp. B) has finite 

global dimension, and in this case, the ARC holds for A if and only if it holds for B
(resp. C).

Proof. It follows from Lemma 2.2 that i∗, i∗ and i! preserve K b(proj), and i! preserves 
coproducts. Therefore, i! preserves K b(Proj). Moreover, i∗ is a fully faithful functor 
which preserves K b(proj) and Db(mod), and then the induced functor ĩ∗ : Dsg(B) →
Dsg(A) is also fully faithful, see [29, Lemma 1.1] or [9, Lemma 2.2]. Applying Corollary 3.5
to the adjoint triple (i∗, i∗, i!), we get that the ARC holds for B provided it holds for A.

Assume the ladder can be completed to a ladder of height 4. Without loss of generality, 
we may assume it extends one step downwards, and the upward case can be proved 
similarly. Consider the following ladder of height 4

D(B-Mod)
i∗

i?

D(A-Mod)i!

i∗

j∗

j?

D(C-Mod)j∗

j!

(3.2)

Then, it follows from Lemma 2.2 that j∗ and j? preserve K b(proj). Moreover, j? preserves 
coproducts and then it preserves K b(Proj). On the other hand, j∗ induces a fully faithful 
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functor between the corresponding singularity categories. Now, applying Corollary 3.5
to the adjoint triple (j∗, j∗, j?), we get that the ARC holds for C if it holds for A.

By [22, Proposition 2.5], the functors i∗, i!, i?, j∗, j∗ and j? induce a recollement 
between the corresponding singularity categories. Therefore, i∗ induces a singular equiv-
alence if and only if Dsg(C) = 0, and this occurs precisely when C has finite global 
dimension. In this case, i! also induces a singular equivalence. Applying Corollary 3.7 to 
the left part of the ladder (3.2), we obtain that the ARC holds for A if and only if it 
holds for B. Similarly, j∗ induces a singular equivalence if and only if B has finite global 
dimension, and in this case, the ARC holds for A if and only if it holds for C. �

Theorem 3.8 can be applied to triangle matrix algebras.

Corollary 3.9. Let A =
(

B 0
CMB C

)
be a triangular matrix algebra, where B, C are 

algebras and M a finitely generated C-B-bimodules. Then following statements hold.

(1). If gl.dimB < ∞ and proj.dimC M < ∞, then the ARC holds for A if and only if 
it holds for C;

(2). If gl.dimC < ∞ and proj.dimMB < ∞, then the ARC holds for A if and only if 
it holds for B.

Proof. Let e1 =
(

1 0
0 0

)
and e2 =

(
0 0
0 1

)
. It follows from [1, Example 3.4] that there 

is a ladder of height 2

D(C-Mod)
Ae2⊗L

C−

D(A-Mod)e2A⊗L

A− D(B-Mod).

Ae1⊗L

B−

(3.3)

If gl.dimB < ∞ and proj.dimC M < ∞, then proj.dimMB < ∞ and by [1, Example 
3.4], the ladder (3.3) can be extended to a ladder of height 4. Applying Theorem 3.8 to 
this ladder, we have that the ARC holds for A if and only if it holds for C. The second 
case can be proved similarly. �

Recall that an A-module M is Gorenstein projective if there are short exact sequences

0 −→ Xi −→ Pi −→ Xi+1 −→ 0, i ∈ Z

in A-mod with Xi ∈ ⊥A and Pi projective for all i such that M = X0. Particularly, all 
Gorenstein projective modules are contained in ⊥A. Denote by A-Gproj the full subcat-
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egory of A-mod consisting of all Gorenstein projective modules. The stable category of 
A-Gproj is a triangulated category and is contained in ⊥A. Thus, one gets full embeddings

A-Gproj ↪→ ⊥A ↪→ Dsg(A).

If ARC holds for A, that is, ⊥A does not contain any nonzero self-orthogonal objects, then 
there is no nonzero self-orthogonal objects in A-Gproj. It is then natural to conjecture:

Gorenstein projective conjecture (GPC for short): A finitely generated Gorenstein 
projective module M over A is projective if ExtiA(M, M) = 0, for any i ≥ 1.

This conjecture was stated by Luo and Huang in [23]. Let G : Db(B-mod) →
Db(A-mod) be a non-negative triangle functor (a small module version of Definition 3.1) 
admitting a right adjoint H which preserves K b(proj). Due to [21, Proposition 5.3], we 
have a commutative diagram

B-Gproj G

ιB

A-Gproj

ιA

Dsg(B) G̃
Dsg(A),

analogous to Proposition 3.2. Therefore, if we replace ARC by GPC, all results in this 
section (e.g., Theorem 3.6 and Theorem 3.8) still hold and the proofs are almost identical 
to the case of ARC.

4. Singular equivalences induced by tensor functors

Let A and B be two algebras, and X• be a complex of B-A-bimodules. Then the 
tensor product functor F = X• ⊗L

A − : D(A-Mod) → D(B-Mod) has a right adjoint 
RHomB(X•, −). It is natural to ask when F induces an equivalence between the singu-
larity categories, and under which conditions this singular equivalence preserves ARC.

It does happen often that F induces a singular equivalence. Typical examples are 
singular equivalences of Morita type (with level) when X• is a module ([41, Theorem 3.1], 
[36, Definition 2.1]). See [10, Proposition 4.8] for recent progress in this direction. In 
the general case, it was proved recently by Dalezios [14, Theorem 3.6] that F induces 
a singular equivalence if Y • := RHomB(X•, B) is a perfect complex of A-modules, 
RHomB(X•, X•) ∼= A in Dsg(Ae), and X• ⊗L

A RHomB(X•, B) ∼= B in Dsg(Be).

The main result of this section is the following theorem.

Theorem 4.1. Suppose that X• is a B-A-bimodules complex which is perfect over B and 
A, and assume Y • := RHomB(X•, B) is a perfect complex of A-modules. If BX•⊗L

A− :
D(A-Mod) → D(B-Mod) induces a singular equivalence, then ARC holds for B implies 
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that it holds for A. If moreover RHomA(Y •, A) ∈ K b(B-proj), then ARC holds for A
if and only if it holds for B.

Proof. Note that there is an adjoint tuple

D(B-Mod) Y •⊗L

B−

L

D(A-Mod)

RHomA(Y •,−)

X•⊗L

A−

with X• ⊗L
A − and Y • ⊗L

B − preserving K b(proj). Here, we observe that

Y • ⊗L
B − = RHomB(X•, B) ⊗L

B − ∼= RHomB(X•,−),

since BX• is perfect, and thus (X•⊗L
A−, Y •⊗L

B−) is an adjoint pair. The existence of L
follows from the assumption that X•

A is a perfect complex; see [1, Lemma 2.8]. Clearly, 
Y • ⊗L

B − preserves coproducts and thus Y • ⊗L
B − preserves K b(Proj). Now notice that 

since X• ⊗L
A − induces a singular equivalence between B and A, by Corollary 3.5, ARC 

holds for B implies that it holds for A.
Since Y • ⊗L

B − preserves K b(proj), it follows from Lemma 2.2 that RHomA(Y •, −)
preserves coproducts, and it admits a right adjoint K. Hence, the condition RHomA(Y •,

A) ∈ K b(B-proj) implies that RHomA(Y •, −) preserves K b(Proj). On the other hand, 
(X• ⊗L

A −, Y • ⊗L
B −) gives an adjoint pair between the singularity categories. Since 

X•⊗L
A− induces a singular equivalence, so does Y •⊗L

B −. Therefore, there is an adjoint 
tuple

D(B-Mod)
Y •⊗L

B−

K

L

D(A-Mod)

RHomA(Y •,−)

X•⊗L

A−

with RHomA(Y •, −) preserving K b(Proj) and Y •⊗L
B− inducing a singular equivalence 

between B and A. Then we have done by Theorem 3.6. �
Now we focus on singular equivalences from change of rings, which was studied in [28,

14]. Let f : A → B be a morphism of algebras with proj.dimA B < ∞ and proj.dimBA <

∞. Recall from [28, Lemma 3.2] that there is an adjoint pair
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D(B-Mod)

AB⊗L

B−

D(A-Mod).
BB⊗L

A−

(4.1)

If Cone(f) ∈ K b(Ae-proj) (that is, B ∼= A in Dsg(Ae)) and BB ⊗L
A BB

∼→ BBB in 
Dsg(Be), then BB⊗L

A− and AB⊗L
B− induce mutual equivalences between the singularity 

categories; see [14, Corollary 3.7].
In particular, f : A → B is a homological epimorphism if the induced functor

f∗ = AB ⊗L
B − : D(B-Mod) → D(A-Mod)

is a full embedding, or equivalently, there is an isomorphism BB ⊗L
A BB

∼→ BBB in 
D(Be-Mod); see [18]. In this case, AB ⊗L

B − induces a fully faithful functor between the 
corresponding singularity categories.

Corollary 4.2. Let f : A → B be a morphism of algebras with proj.dimA B < ∞ and 
proj.dimBA < ∞. Then the following hold.

(1). If Cone(f) ∈ K b(Ae-proj), then ARC holds for B implies that it holds for A;
(2). If moreover f is a homological epimorphism and RHomA(B, A) ∈ K b(B-proj), 

then the ARC holds for A if and only if it holds for B.

Proof. (1) Since proj.dimBA < ∞, it follows from [1, Lemma 2.8] that the functor 
BB ⊗L

A − in diagram (4.1) has a left adjoint. Moreover, proj.dimA B < ∞ implies 
that AB ⊗L

B − preserves K b(Proj), and Cone(f) ∈ K b(Ae-proj) yields that BB ⊗L
A −

induces a fully faithful functor between the corresponding singularity categories, see [28, 
Proposition 3.7]. Now the statement (1) follows immediately from Corollary 3.5.

(2) Since Cone(f) ∈ K b(Ae-proj) and f is a homological epimorphism, we infer that 
BB ⊗L

A − and AB ⊗L
B − induce mutual equivalences between the singularity categories. 

Now we finish our proof by Theorem 4.1. �
A special case of algebra homomorphism is the canonical map from an algebra A to 

its quotient A/I for some ideal I. Applying Corollary 4.2, we get the following results:

(1). If I has finite projective dimension as an A-A-bimodule, then ARC holds for A/I

implies that it holds for A. Indeed, proj.dimAe I < ∞ yields that proj.dimA(A/I) <
∞ and proj.dim(A/I)A < ∞. Moreover, it is clear that the cone of A → A/I is 
I[1], which belongs to K b(Ae-proj) by assumption. So, the statement follows from 
Corollary 4.2 (1).

(2). A special case of (1) occurs when I ∼= M ⊗k N , where M and N are left and right 
A-modules, respectively, both have finite projective dimension. Another example is 
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that I is a 1-dimensional ideal which has finite projective dimension as left and as 
right module. We refer to [28, Corollary 3.10 and 3.11] for more explanations.

(3). In general, it is difficult to check whether the condition RHomA(B, A) ∈
K b(B-proj) in Corollary 4.2 (2) is satisfied. However, it is the case when A is 
a Gorenstein algebra. In fact, assume all conditions in Corollary 4.2 are satisfied, 
except for RHomA(B, A) ∈ K b(B-proj). Then it follows from the proof of Theo-
rem 4.1 that there are adjoint functors

D(B-Mod) i∗=B⊗L

B− D(A-Mod)
i!

i∗=B⊗L

A−

where the functor i∗ is fully faithful. Therefore, we get i∗i∗ ∼= 1B and i!i∗ ∼= 1B , and 
thus B ∼= i!i∗B ∈ i!(K b(A-proj)) = i!(K b(A-inj)), which is contained in K b(B-inj)
by [31, Lemma 1]. As a result, we obtain inj.dimB B < ∞, and dually, we also have 
proj.dimB Homk(B, k) < ∞, that is, B is also a Gorenstein algebra. Therefore, 
RHomA(B, A) = i!A ∈ i!(K b(A-inj)) ⊆ K b(B-inj) = K b(B-proj).

5. Examples

In this section, we illustrate our results by some examples.

Example 5.1. (Tiled orders) Let A be a finite dimensional algebra, Ii,j be an ideal of A. 
Let us consider tiled triangular rings, i.e., rings of the form

Δ =

⎛
⎜⎜⎝

A I1,2 · · · I1,n

A A
. . .

...
...

. . . In−1,n
A · · · · · · A

⎞
⎟⎟⎠ .

Here, to ensure that Δ is a ring, we need the condition Ii,lIl,j ⊆ Ii,j for 1 ≤ i < l < j ≤ n; 
see [11, Section 1] for more details.

Proposition 5.2. Assume that proj.dim(AI1,i) < ∞, gl.dim(A/Ii−1,i) < ∞ for i =
2, . . . , n, and A satisfies ARC. Then Δ satisfies ARC.

Proof. As shown in [11, Proposition 4.14], the two algebras

Δ =

⎛
⎜⎜⎜⎜⎜⎝

A I1,2 I1,3 · · · I1,n

A A I2,3
...

...
...

. . .
. . .

...
...

...
. . . In−1,n

A A A A A

⎞
⎟⎟⎟⎟⎟⎠ and Φ =

⎛
⎜⎜⎜⎝

A/I1,2 I2,3/I1,3 · · · I2,n/I1,n 0
A/I1,2 A/I1,3 · · · I3,n/I1,n 0

...
...

...
...

A/I1,2 A/I1,3 · · · In−1,n/I1,n 0
A/I1,2 A/I1,3 · · · A/I1,n 0
A/I1,2 A/I1,3 · · · A/I1,n A

⎞
⎟⎟⎟⎠

are derived equivalent. Let us denote Φ1 :=
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⎛
⎜⎜⎝
A/I1,2 I2,3/I1,3 · · · I2,n/I1,n
A/I1,2 A/I1,3 · · · I3,n/I1,n

...
...

. . .
...

A/I1,2 A/I1,3 · · · A/I1,n

⎞
⎟⎟⎠ .

Since proj.dim(AI1,i) < ∞ for i = 2, . . . , n, the A-Φ1-bimodule (A/I1,2, A/I1,3, . . . ,
A/I1,n) has finite projective dimension as a left A-module.

Now, we want to show that Φ1 has finite global dimension. Let e be an idempotent of 
Φ1 which has 1 in the (1, 1)-th position and zeros elsewhere. It is immediate that

Φ1eΦ1 =

⎛
⎜⎜⎝
A/I1,2 I2,3/I1,3 · · · I2,n/I1,n
A/I1,2 I2,3/I1,3 · · · I2,n/I1,n

...
...

...
A/I1,2 I2,3/I1,3 · · · I2,n/I1,n

⎞
⎟⎟⎠

which is projective as a right Φ1-module. Recall that we have I1,2I2,i ⊆ I1,i for 
i = 3, . . . , n. So, I2,i/I1,i is a left A/I1,2-module for i = 3, . . . , n. It follows from 
gl.dim(A/I1,2) < ∞ that I2,i/I1,i has finite projective dimension as a left A/I1,2-module 
for i = 3, . . . , n. Hence, Φ1eΦ1 has finite projective dimension as a left Φ1-module.

It follows from TorΦ1
i (Φ1/Φ1eΦ1, Φ1/Φ1eΦ1) = 0 for i > 0 that the canonical ring 

homomorphism λ : Φ1 → Φ1/Φ1eΦ1 is a homological epimorphism. Thus, we have an 
adjoint triple

D(Mod-Φ1/Φ1eΦ1)
λ∗

D(Mod-Φ1)

RHomΦ1 (Φ1/Φ1eΦ1,−)

−⊗L

Φ1Φ1/Φ1eΦ1

where λ∗ is an embedding, and − ⊗L
Φ1

Φ1/Φ1eΦ1 and RHomΦ1(Φ1/Φ1eΦ1, −) are the 
derived functors of − ⊗Φ1 Φ1/Φ1eΦ1 and HomΦ1(Φ1/Φ1eΦ1, −), respectively. Note that 
Φ1eΦ1 is projective as a right Φ1-module, and has finite projective dimension as a left Φ1-
module. Then, the adjoint triple (− ⊗L

Φ1
Φ1/Φ1eΦ1, λ∗, RHomΦ1(Φ1/Φ1eΦ1, −)) restricts 

to Db(Mod) and K b(proj), respectively.
By [26, Example 5.3.4], the Verdier localization of D(Mod-Φ1) via the essential image 

of D(Mod-Φ1/Φ1eΦ1) under λ∗ is triangle equivalent to TriaD(Mod-Φ1)(Φ1eΦ1) which is 
the smallest full triangulated subcategory of D(Mod-Φ1) containing Φ1eΦ1 and closed 
under small coproducts, and TriaD(Mod-Φ1)(Φ1eΦ1) is triangle equivalent to the cate-
gory D((CdgΦ1)(Φ1eΦ1,Φ1eΦ1)) in which (CdgΦ1)(Φ1eΦ1, Φ1eΦ1) is a dg algebra. Since 
Φ1eΦ1 is a finitely generated projective right Φ1-module, we have a triangle equiv-
alence between D((CdgΦ1)(Φ1eΦ1,Φ1eΦ1)) and D(Mod-H0((CdgΦ1)(Φ1eΦ1,Φ1eΦ1))). 
And the latter one is triangle equivalent to D(Mod-eΦ1e). Note that eΦ1e = A/I1,2
and gl.dim(A/I1,2) < ∞. Then, Φop

1 and (Φ1/Φ1eΦ1)
op are singularly equivalent, where 
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Φop

1 and (Φ1/Φ1eΦ1)
op are the opposite algebras of Φ1 and Φ1/Φ1eΦ1, respectively. Then, 

Φ1 has finite global dimension if and only if so does Φ1/Φ1eΦ1.
It is clear that

Φ1/Φ1eΦ1 =

⎛
⎜⎜⎝
A/I2,3 I3,4/I2,4 · · · I3,n/I2,n
A/I2,3 A/I2,4 · · · I4,n/I2,n

...
...

. . .
...

A/I2,3 A/I2,4 · · · A/I2,n

⎞
⎟⎟⎠ .

We write Φ2 for Φ1/Φ1eΦ1. Recursively, Φ1 has finite global dimension if and only if 
so does A/In−1,n. Thus, we have gl.dim(Φ1) < ∞. Hence, by Corollary 3.9, Δ satisfies 
ARC if and only if it holds for A since derived equivalences preserve ARC. �
Example 5.3. (One-point extensions) Let A be an algebra, and let M be a left A-module. 
The one-point extension algebra A[M ] is defined to be the triangular matrix algebra

[
k 0
M A

]

If M has finite projective dimension, then ARC holds for A[M ] if and only if it holds for 
A. This follows immediately from Corollary 3.9.

Example 5.4. (Quotient algebras) Let A be an algebra, and let e be a primitive idem-
potent in A such that the multiplication map Ae ⊗k eA → AeA is an isomorphism and 
eAe ∼= k. The ideal AeA is called a heredity ideal in the literature. If furthermore the 
injective dimension of the right A-module eA is finite, then ARC holds for A if and only 
if it holds for A/AeA.

Indeed, it follows from [12] that D(A-Mod) admits a recollement

D(A/AeA-Mod) i∗ D(A-Mod)
i∗

i!

j∗ D(eAe-Mod)
j!

j∗

(5.1)

where i∗ = A/AeA ⊗L
A −, i∗ = A/AeA ⊗L

A/AeA −, i! = RHomA(A/AeA, −), j! =
Ae ⊗L

eAe −, j∗ = eA ⊗L
A − and j∗ = RHomeAe(eA, −). Clearly, gl.dim eAe < ∞ im-

plies that j∗A = eA ∈ K b(eAe-proj), and inj.dim eAA < ∞ yields that j∗(eAe) =
RHomeAe(eA, eAe) = RHomk(eA, k) ∈ K b(A-proj). Hence, by [1, Lemma 2.5 and 
Proposition 3.2], the recollement (5.1) can be extended two steps downwards. Similarly, 
by [1, Lemma 2.8 and Proposition 3.2], proj.dimAeeAe < ∞ implies that (5.1) can be 
extended one step upwards. Therefore, (5.1) is completed to a ladder of height 4, and by 
Theorem 3.8, ARC holds for A if and only if it holds for A/AeA.

Example 5.5. (Derived discrete algebras) From [35], an algebra A is said to be de-
rived discrete provided for every positive element d ∈ K0(A)(Z) there are only finitely 



Y. Chen et al. / Journal of Algebra 623 (2023) 42–63 61
many isomorphism classes of indecomposable objects X in Db(A-mod) of cohomology 
dimension vector (dimHp(X))p∈Z = d. Note that derived discrete algebras are of finite 
representation type, which were proved to satisfy ARC. Here, we apply our main theorem 
to reprove that ARC holds for all derived discrete algebras.

From [6,35], a basic connected derived discrete algebra A is derived equivalent to either 
a piecewise hereditary algebra of Dynkin type, or a bound quiver algebra Λ(r, n, m) given 
by

1
α1 · · ·

αn−r−2
n− r − 1

αn−r−1

(−m)
α−m

· · ·
α−2

(−1)
α−1

0

α0

n− r

αn−r

n− 1
αn−1

· · ·
αn−2

n− r + 1
αn−r+1

with the relations αn−1α0, αn−2αn−1, . . . , αn−rαn−r+1, where 1 ≤ r ≤ n and m ≥ 0. 
Clearly, if gl.dimA < ∞ then ARC always hold true, and if gl.dimA = ∞ then A
is derived equivalent to Λ(n, n, m), which admits a series of infinite ladders, see [32, 
Lemma 17]. Note that the right terms of these ladders are k, and the left can be reduced 
to Λ(n, n, 0) consecutively. Hence, applying Theorem 3.8 shows that ARC holds for A if 
and only if it holds for Λ(n, n, 0), and the latter is known as 2-truncated cycle algebra, 
which is representation finite and then satisfies ARC by [3].
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