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1. Introduction

Let R be a ring with a unit. Recall that R is Gorenstein if R is two-sided noetherian satisfying idRR < ∞
and idRR < ∞. Here, we use id to denote the injective dimension of a module. It is well known that for 
a Gorenstein ring R we have idRR = idRR; see [15, Lemma A]. Let m ≥ 0. A Gorenstein ring R is 
m-Gorenstein if idRR = idRR ≤ m. We observe that a 0-Gorenstein ring coincides with a quasi-Frobenius 
ring.

Let n ≥ 2. Let Γ =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1n
R2 · · · M2n

. . .
...

Rn

⎞
⎟⎟⎟⎟⎠ be an upper triangular matrix ring of order n, where each Ri

is a ring and each Mij is an Ri–Rj-bimodule together with bimodule morphisms ψilj : Mil ⊗Rl
Mlj → Mij

satisfying

ψijt(ψilj(mil ⊗mlj) ⊗mjt) = ψilt(mil ⊗ ψljt(mlj ⊗mjt))

for 1 ≤ i < l < j < t ≤ n.
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For 1 ≤ t ≤ n − 1, we denote by Γt =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1t
R2 · · · M2t

. . .
...
Rt

⎞
⎟⎟⎟⎟⎠ the ring given by the t × t leading principal 

submatrix of Γ. Denote the natural left Γt-module 

⎛
⎜⎝

M1,t+1
...

Mt,t+1

⎞
⎟⎠ by M∗

t .

We will prove the following results, where the first statement is obtained by applying [3, Theorem 3.3]
and [14, Lemma 2.6] repeatedly. We mention that the Gorensteinness of an upper triangular matrix ring is 
studied in [14] and [5].

Proposition 1.1. Assume that R1, R2, · · · , Rn are quasi-Frobenius rings. Then

(1) The upper triangular matrix ring Γ is Gorenstein if and only if all the bimodules Mij are finitely 
generated projective on both sides.

(2) The upper triangular matrix ring Γ is 1-Gorenstein if and only if all the bimodules Mij are finitely 
generated projective on both sides, and each left Γt-module M∗

t is projective for 1 ≤ t ≤ n − 1.

For the proof, (1) is a special case of Proposition 3.4. Thanks to (1), the “only if” part of (2) is a special 
case of Proposition 3.8(1), and the “if” part is a special case of Proposition 3.8(2). Here, we use the fact 
that a module over a quasi-Frobenius ring is projective provided that it has finite projective dimension.

Let k be a field and let C be a finite EI category. Here, the EI condition means that any endomorphism 
in C is an isomorphism. For an object x, we denote by AutC (x) and kAutC (x) the group of endomorphisms 
of x and the group algebra, respectively. We observe that for any two objects x and y in C , kHomC (x, y) is 
a kAutC (y)–kAutC (x)-bimodule. We say that a finite EI category C is projective over k if each bimodule 
kHomC (x, y) is projective on both sides.

We denote by kC the category algebra of C . We mention that category algebras play an important 
role in the representation theory of finite groups; see [10,11]. The following result is an application of 
Proposition 1.1(1), where we use the fact that the category algebra is isomorphic to a certain upper triangular 
matrix algebra.

Proposition 1.2. Let k be a field and C be a finite EI category. Then the category algebra kC is Gorenstein 
if and only if C is projective over k.

The concept of a finite free EI category is introduced in [8]. It is due to [8, Theorem 5.3] that the category 
algebra kC is hereditary if and only if C is a finite free EI category satisfying that the endomorphism groups 
of all objects have orders invertible in k. The following result is a Gorenstein analogue to [8, Theorem 5.3].

Theorem 1.3. Let k be a field and C be a finite EI category. Then the category algebra kC is 1-Gorenstein 
if and only if C is a free EI category and projective over k.

Indeed, we may deduce [8, Theorem 5.3] from Theorem 1.3, using the well-known fact that a finite dimen-
sional algebra is hereditary if and only if it is 1-Gorenstein with finite global dimension; see Example 5.5.

This paper is organized as follows. In Section 2, we give an explicit description of projective modules and 
injective modules over an upper triangular matrix ring. In Section 3, we give conditions on when a triangular 
matrix ring is Gorenstein of a given selfinjective dimension, and prove Proposition 1.1. In Section 4, we give 
a new characterization of finite free EI categories in terms of the corresponding triangular matrix algebras; 
see Proposition 4.5. In Section 5, we prove Proposition 1.2 and Theorem 1.3.
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2. Modules over triangular matrix rings

In this section, we describe explicitly projective modules and injective modules over an upper triangular 
matrix ring.

Let R1 and R2 be two rings, M12 an R1–R2-bimodule. We consider the corresponding upper triangular 

matrix ring Γ =
(
R1 M12
0 R2

)
.

Recall the description of left Γ-modules via column vectors. Let Xi be a left Ri-module, i = 1, 2, and 
let ϕ12 : M12 ⊗R2 X2 → X1 be a morphism of left R1-modules. We define the left Γ-module structure on 

X =
(
X1
X2

)
by the following identity

(
r1 m12
0 r2

)(
x1
x2

)
=

(
r1x1 + ϕ12(m12 ⊗ x2)

r2x2

)
.

We mention that the left Γ-module structure on X =
(
X1
X2

)
depends on the morphism ϕ12. Indeed, every 

left Γ-module arises in this way; compare [1, III.2, Proposition 2.1]. A morphism 

(
X1
X2

)
→

(
X ′

1
X ′

2

)
of 

Γ-modules is denoted by 

(
f1
f2

)
, where fi : Xi → X ′

i is an Ri-morphism satisfying

f1 ◦ ϕ12 = ϕ′
12 ◦ (IdM12 ⊗ f2). (2.1)

Dually, we have the description of right Γ-modules via row vectors.
Let M be a left module over a ring R. We denote by pdRM and idRM the projective dimension and the 

injective dimension of M , respectively.
The following lemma is well-known; compare [1, III, Propositions 2.3 and 2.5] and [14, Lemma 1.2].

Lemma 2.1. Let Γ =
(
R1 M12
0 R2

)
be an upper triangular matrix ring, and let X =

(
X1
X2

)
be a left Γ-module 

as above. Then the following statements hold.

(1) pdR1
X1 = pdΓ

(
X1
0

)
and idR2X2 = idΓ

(
0
X2

)
.

(2) pdR2
X2 ≤ pdΓ

(
X1
X2

)
and idR1X1 ≤ idΓ

(
X1
X2

)
. �

Let Γ =
(
R1 M12
0 R2

)
be as above. For each left R1-module X1, we associate two left Γ-modules i1(X1) =(

X1
0

)
and j1(X1) =

(
X1

HomR1(M12, X1)

)
, where the Γ-module structure on j1(X1) is determined by 

the evaluation map M12 ⊗R2 HomR1(M12, X1) → X1. For each left R2-module X2, we associate two left 

Γ-modules i2(X2) =
(
M12 ⊗R2 X2

X2

)
and j2(X2) =

(
0
X2

)
, where the Γ-module structure on i2(X2) is 

determined by the identity map on M12 ⊗R2 X2.
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The following result seems to be well known; compare [1, III, Proposition 2.5]. For completeness, we 
include a proof.

Lemma 2.2. Let Γ =
(
R1 M12
0 R2

)
be an upper triangular matrix ring. Then we have the following statements.

(1) A left Γ-module is projective if and only if it is isomorphic to i1(P1) ⊕ i2(P2) for some projective left 
R1-module P1 and projective left R2-module P2.

(2) A left Γ-module is injective if and only if it is isomorphic to j1(I1) ⊕ j2(I2) for some injective left 
R1-module I1 and injective left R2-module I2.

Proof. We only prove (1). For the “if” part, we consider the subring Γ′ =
(
R1 0
0 R2

)
of Γ. Then P ′ =

(
P1
P2

)

is a projective left Γ′-module. We observe that i1(P1) ⊕ i2(P2) isomorphic to Γ ⊗Γ′ P ′. It follows that the 
left Γ-module i1(P1) ⊕ i2(P2) is projective.

For the “only if” part, let X =
(
X1
X2

)
be a projective left Γ-module. Then by Lemma 2.1(2) X2 is 

a projective left R2-module, and by the above i2(X2) is a projective left Γ-module. Consider the nature 

projections i2(X2) 
π1�

(
0
X2

)
and X

π2�
(

0
X2

)
. Since i2(X2) and X are projective left Γ-modules, we 

have two morphisms i2(X2) 
α→ X and X

β→ i2(X2) satisfying π1 = π2 ◦ α and π2 = π1 ◦ β. Therefore, 
π1 ◦ β ◦ α = π1. By (2.1), we observe that β ◦ α = Idi2(X2). It follows that α is a split monomorphism. In 

particular, X is isomorphic to i2(X2) ⊕ Cokerα. We observe that Cokerα is of the form 

(
X ′

1
0

)
= i1(X ′

1)

for some left R1-module X ′
1. Since Cokerα is a projective left Γ-module, we have that X ′

1 is a projective left 
R1-module by Lemma 2.1(1). Then we are done. �

We now extend the above results to an upper triangular matrix ring of an arbitrary order.
Let n ≥ 2. Let Ri be a ring for 1 ≤ i ≤ n, and let Mij be an Ri–Rj-bimodule for 1 ≤ i < j ≤ n. Let 

ψilj : Mil ⊗Rl
Mlj → Mij be morphisms of Ri–Rj-bimodules satisfying

ψijt(ψilj(mil ⊗mlj) ⊗mjt) = ψilt(mil ⊗ ψljt(mlj ⊗mjt))

for 1 ≤ i < l < j < t ≤ n.

Then we have the corresponding n × n upper triangular matrix ring Γ =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1n
R2 · · · M2n

. . .
...

Rn

⎞
⎟⎟⎟⎟⎠. The 

elements of Γ, denoted by (mij), are n × n upper triangular matrices, where mij ∈ Mij for i < j and 
mii ∈ Ri. The multiplication is induced by those morphisms ψilj . We write ψilj(mil ⊗mlj) as milmlj .

We describe left Γ-modules via column vectors. Let Xi be a left Ri-module for 1 ≤ i ≤ n, and ϕjl :
Mjl ⊗Rl

Xl → Xj be a morphism of left Rj-modules satisfying

ϕij ◦ (IdMij
⊗ ϕjl) = ϕil ◦ (ψijl ⊗ IdXl

)

for 1 ≤ i < j < l ≤ n.
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Set X =

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠. Denote the elements of X by (xk), where xk ∈ Xk for 1 ≤ k ≤ n. We write ϕij(mij⊗xj)

as mijxj . Then we define the left Γ-module structure on X by the following identity

(mij)(xk) = (
n∑
l=i

milxl).

We recall that mij ’s are defined only for i ≤ j, therefore, the range of the summation on the right side is 
from i to n. Indeed, every left Γ-module arises in this way.

Dually, we have the description of right Γ-modules via row vectors.
Let Γ be an upper triangular matrix ring of order n as above. We consider the subring ΓD =

diag(R1, · · · , Rn) of Γ consisting of diagonal matrices. Observe that ΓD is isomorphic to the direct prod-
uct ring 

∏n
i=1 Ri. We view an Ri-module as a ΓD-module via the projection ΓD � Ri. We denote the i-th 

column of Γ by Ci which is a Γ–Ri-bimodule, and denote the i-th row of Γ by Hi which is an Ri–Γ-bimodule.
Let 1 ≤ t ≤ n, and let A be a left Rt-module. We consider the Γ-module it(A) = Ct ⊗Rt

A. Observe an 
isomorphism

Γ ⊗ΓD A
∼−→ it(A) (2.2)

of Γ-modules sending (mij) ⊗a to (mit) ⊗a. We describe it(A) as 

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M1t ⊗Rt
A

...
Rt ⊗Rt

A
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, where the corresponding 

morphisms are ϕjl = ψjlt⊗IdA for l < t, ϕjt : Mjt⊗Rt
(Rt⊗Rt

A) → Mjt⊗Rt
A is the canonical isomorphism, 

and ϕjl = 0 for l > t.
We consider the Γ-module jt(A) = HomRt

(Ht, A). Observe an isomorphism

HomΓD(Γ, A) ∼−→ jt(A) (2.3)

of Γ-modules sending f to its restriction on Ht. We describe jt(A) as 

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...

HomRt
(Rt, A)
...

HomRt
(Mtn, A)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, where the 

corresponding morphisms ϕjl : Mjl⊗Rl
HomRt

(Mtl, A) → HomRt
(Mtj , A) are given by ϕjl(mjl⊗f)(mtj) =

f(mtjmjl) for j > t, ϕtl : Mtl ⊗Rl
HomRt

(Mtl, A) → HomRt
(Rt, A) is the evaluation map, and ϕjl = 0 for 

j < t.
The following results give an explicit description of projective modules and injective modules over an 

upper triangular matrix ring.

Proposition 2.3. Let Γ be an upper triangular matrix ring of order n. Then we have the following statements.

(1) A left Γ-module is projective if and only if it is isomorphic to 
n⊕

t=1
it(Pt) for some projective left 

Rt-module Pt, 1 ≤ t ≤ n.
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(2) A left Γ-module is injective if and only if it is isomorphic to 
n⊕

t=1
jt(It) for some injective left Rt-module It, 

1 ≤ t ≤ n.

Proof. We only prove (1). The “if” part is obvious since it preserves projective modules by the isomor-
phism (2.2).

For the “only if” part, we use induction on n. If n = 2, it is Lemma 2.2(1). Assume that n > 2. Write 

Γ =
(

Γn−1 M∗
n−1

0 Rn

)
, where Γn−1 is the (n − 1) × (n − 1) leading principal submatrix of Γ and M∗

n−1 =
⎛
⎜⎝

M1n
...

Mn−1n

⎞
⎟⎠ is a Γn−1–Rn-bimodule. Assume that X is a projective left Γ-module. Write X =

(
X ′

Xn

)
, 

where X ′ =

⎛
⎜⎝

X1
...

Xn−1

⎞
⎟⎠ is a left Γn−1-module. By Lemma 2.2(1), X 
 i′1(X ′

1) ⊕ in(Pn), where X ′
1 is a 

projective left Γn−1-module and Pn is a projective left Rn-module. By induction, we have an isomorphism 

X ′
1 


n−1⊕
t=1

it(Pt) of Γn−1-modules, where Pt is a projective left Rt-module, 1 ≤ t ≤ n −1. We identify i′1it(Pt)

with it(Pt). This completes the proof. �
3. Gorenstein triangular matrix rings

In this section, we study Gorenstein upper triangular matrix rings. We give conditions such that the 
upper triangular matrix rings are Gorenstein with a prescribed selfinjective dimension.

Let R be a ring with a unit. Recall that R is Gorenstein if R is two-sided noetherian satisfying idRR < ∞
and idRR < ∞. It is well known that for a Gorenstein ring R, idRR = idRR; see [15, Lemma A]. Let m ≥ 0. 
A Gorenstein ring R is m-Gorenstein if idRR = idRR ≤ m. Recall that for any m-Gorenstein ring R and 
any left (or right) R-module X, idRX < ∞ if and only if idRX ≤ m, if and only if pdRX < ∞, if and only 
if pdRX ≤ m; see [7, Theorem 9].

The following result generalizes [14, Lemma 2.6] with a different proof.

Lemma 3.1. Let Γ =
(
R1 M12
0 R2

)
be a Gorenstein upper triangular matrix ring. Then the following are 

equivalent.

(1) id(R1)R1 < ∞.
(2) The ring R1 is Gorenstein.
(3) pdR1M12 < ∞.
(4) idR2R2 < ∞.
(5) The ring R2 is Gorenstein.
(6) pd(M12)R2 < ∞.

Proof. We observe that R1 and R2 are two-sided noetherian rings, since they are isomorphic to certain 
quotient rings of Γ.

“(1) ⇒ (2)” We observe that idΓ

(
R1
0

)
< ∞, since 

(
R1
0

)
is a projective left Γ-module and Γ is 

Gorenstein. Lemma 2.1(2) implies that idR1R1 < ∞. Hence R1 is Gorenstein.
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“(2) ⇒ (3)” We observe that idΓ

(
M12
R2

)
< ∞, since 

(
M12
R2

)
is a projective left Γ-module and Γ is 

Gorenstein. Lemma 2.1(2) implies that idR1M12 < ∞. Since R1 is Gorenstein, we have pdR1M12 < ∞.

“(3) ⇒ (4)” By Lemma 2.1(1), pdΓ

(
M12
0

)
= pdR1M12 < ∞. Since Γ is Gorenstein, we have 

idΓ

(
M12
0

)
< ∞. Recall from the above that idΓ

(
M12
R2

)
< ∞. The following exact sequence of Γ-modules

0 →
(
M12
0

)
→

(
M12
R2

)
→

(
0
R2

)
→ 0

implies idΓ

(
0
R2

)
< ∞. By Lemma 2.1(1) idR2R2 < ∞. Then we are done.

We observe that the opposite ring Γop of Γ is identified with the upper triangular matrix ring (
Rop

2 M12
0 Rop

1

)
. Then “(4) ⇒ (5)” is similar to “(1) ⇒ (2)”; “(5) ⇒ (6)” is similar to “(2) ⇒ (3)”; “(6) ⇒ (1)” 

is similar to “(3) ⇒ (4)”. �

Lemma 3.2. (See [3, Theorem 3.3].) Let Γ =
(
R1 M12
0 R2

)
be an upper triangular matrix ring. Assume that 

R1 and R2 are Gorenstein. Then Γ is Gorenstein if and only if M12 is finitely generated and has finite 
projective dimension on both sides.

Let n ≥ 2, and let Γ =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1n
R2 · · · M2n

. . .
...

Rn

⎞
⎟⎟⎟⎟⎠ be an upper triangular matrix ring of order n.

Notation 3.3. Set M1: =
(
M12, · · · ,M1n

)
. We denote by Γt =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1t
R2 · · · M2t

. . .
...
Rt

⎞
⎟⎟⎟⎟⎠ the ring given by 

the t × t leading principal submatrix of Γ for 1 ≤ t ≤ n − 1. We denote by Γ′
n−1 the ring given by the 

(n − 1) × (n − 1) principal submatrix of Γ which leaves out the first row and the first column. Denote the 

natural left Γt-module 

⎛
⎜⎝

M1,t+1
...

Mt,t+1

⎞
⎟⎠ by M∗

t .

The following result extends Lemma 3.2.

Proposition 3.4. Let Γ be an upper triangular matrix ring of order n as above. Assume that all Ri are 
Gorenstein. Then Γ is Gorenstein if and only if all bimodules Mij are finitely generated and have finite 
projective dimension on both sides.

Proof of the “only if” part. Assume that Γ is Gorenstein. We use induction on n. The case n = 2 is due 

to Lemma 3.2. Assume that n > 2. Write Γ =
(

Γn−1 M∗
n−1

0 Rn

)
=

(
R1 M1:
0 Γ′

)
. Then Γn−1 and Γ′

n−1 are 

n−1
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Gorenstein by Lemma 3.1, and M∗
n−1 and M1: are finitely generated and have finite projective dimension 

on both sides by Lemma 3.2. By induction, all Mij possibly except for M1n are finitely generated and have 
finite projective dimension on both sides. Since M1n is a direct summand of M∗

n−1 as a right Rn-module, it 
is finitely generated as a right Rn-module, and pd(M1n)Rn

< ∞. Since M1n is a direct summand of M1: as 
a left R1-module, it is finitely generated as a left R1-module, and pdR1

M1n < ∞. �
We prove the “if” part of Proposition 3.4 together with the following lemma.

Lemma 3.5. Let Γ be an upper triangular matrix ring of order n. Assume that all bimodules Mij are finitely 
generated and have finite projective dimension on both sides.

(1) Let X =

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ be a left Γ-module. If each Xi is finitely generated as a left Ri-module satisfying 

pdRi
Xi < ∞, then X is finitely generated as a left Γ-module satisfying pdΓX < ∞.

(2) Let Y =
(
Y1, · · · , Yn

)
be a right Γ-module. If each Yi is finitely generated as a right Ri-module satisfying 

pd(Yi)Ri
< ∞, then Y is finitely generated as a right Γ-module satisfying pdYΓ < ∞.

Proof of the “if” part of Proposition 3.4 and Lemma 3.5. We use induction on n.

If n = 2, Lemma 3.2 implies that Γ is Gorenstein. Let X =
(
X1
X2

)
be a left Γ-module. The following 

exact sequence of Γ-modules

0 →
(
X1
0

)
→ X →

(
0
X2

)
→ 0

implies that X is finitely generated, since 

(
X1
0

)
and 

(
0
X2

)
are finitely generated. We have idR2X2 < ∞, 

since R2 is Gorenstein and pdR2
X2 < ∞. By Lemma 2.1(1), idΓ

(
0
X2

)
= idR2X2 < ∞, hence 

pdΓ

(
0
X2

)
< ∞. By Lemma 2.1(1), pdΓ

(
X1
0

)
= pdR1

X1 < ∞. Then by the above exact sequence, 

we have pdΓX < ∞. The proof of Lemma 3.5(2) is similar.

Assume that n > 2. Write Γ =
(

Γn−1 M∗
n−1

0 Rn

)
=

(
R1 M1:
0 Γ′

n−1

)
. Let X be a left Γ-module and Y be 

a right Γ-module. Write X =
(

X ′

Xn

)
and Y = (Y1, Y ′), where X ′ =

⎛
⎜⎝

X1
...

Xn−1

⎞
⎟⎠ and Y ′ =

(
Y2, · · · , Yn

)
. 

By induction, Γn−1 and Γ′
n−1 are Gorenstein, X ′ is finitely generated as a left Γn−1-module satisfying 

pdΓn−1
X ′ < ∞, and Y ′ is finitely generated as a right Γ′

n−1-module satisfying pd(Y ′)Γ′
n−1

< ∞. We 
consider the left Γn−1-module M∗

n−1. By induction in Lemma 3.5(1), M∗
n−1 is finitely generated as a left 

Γn−1-module satisfying pdΓn−1
M∗

n−1 < ∞. We observe that M∗
n−1 is finitely generated as a right Rn-module 

satisfying pd(M∗
n−1)Rn

< ∞. By Lemma 3.2, Γ is Gorenstein. This proves the “if” part of Proposition 3.4
in the general case.
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For Lemma 3.5(1), write X =
(

X ′

Xn

)
, where by induction X ′ is finitely generated as a left Γn−1-module 

satisfying pdΓn−1
X ′ < ∞, and Xn is finitely generated as a left Rn-module satisfying pdRn

Xn < ∞. Then 
X is finitely generated as a left Γ-module satisfying pdΓX < ∞. The proof of Lemma 3.5(2) in this general 
case is similar. �

We give a characterization of left Γ-modules with finite projective dimension; compare [5, Proposi-
tion 2.8(1)].

Corollary 3.6. Let Γ be a Gorenstein upper triangular matrix ring of order n with each Ri Gorenstein. Let 

X =

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ be a finitely generated left Γ-module. Then pdΓX < ∞ if and only if pdRi

Xi < ∞ for each 

1 ≤ i ≤ n.

Proof. The “if” part is due to Lemma 3.5(1). For the “only if” part, we only prove the case n = 2. The general 

case is proved by induction. Let X =
(
X1
X2

)
be a left Γ-module. By Lemma 2.1(2), pdR2

X2 ≤ pdΓX < ∞

and idR1X1 ≤ idΓX < ∞. Then pdR1
X1 < ∞ since R1 is Gorenstein. �

The following results estimate the selfinjective dimension of an upper triangular matrix ring; compare [3, 
Remark 3.5].

Proposition 3.7. Let Γ =
(
R1 M12
0 R2

)
be an upper triangular matrix ring with R1 and R2 Gorenstein. Let 

m, d1, d2 ≥ 0.

(1) If Γ is m-Gorenstein, then both R1 and R2 are m-Gorenstein. Moreover, pdR1
M12 ≤ m − 1 if m ≥ 1.

(2) Assume that Ri is di-Gorenstein for i = 1, 2. If M12 is finitely generated and projective on both sides, 
then Γ is d-Gorenstein, where d = max{d1, d2} if d1 �= d2, and d = d1 + 1 if d1 = d2.

Proof. (1) We have idΓ

(
R1
0

)
≤ m, since Γ is m-Gorenstein and 

(
R1
0

)
is a projective Γ-module. 

By Lemma 2.1(2), idR1R1 ≤ idΓ

(
R1
0

)
≤ m. Then R1 is m-Gorenstein. Recall that, by Lemma 3.1,

pdR1
M12 < ∞. By Lemma 2.1(1), pdΓ

(
M12
0

)
= pdR1

M12 < ∞. Then the following exact sequence of 

Γ-modules

0 →
(
M12
0

)
→

(
M12
R2

)
→

(
0
R2

)
→ 0

implies pdΓ

(
0
R2

)
< ∞, since 

(
M12
R2

)
is a projective Γ-module. Then we have idΓ

(
0
R2

)
≤ m since Γ is 

m-Gorenstein. By Lemma 2.1(1), idR2R2 = idΓ

(
0
R2

)
≤ m. Then R2 is m-Gorenstein. Moreover, by the 
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above exact sequence, pdΓ

(
M12
0

)
= 0 or pdΓ

(
M12
0

)
= pdΓ

(
0
R2

)
− 1 ≤ m − 1 for m ≥ 1. Hence by 

Lemma 2.1(1), pdR1
M12 ≤ m − 1 for m ≥ 1.

(2) By Lemma 3.2, Γ is Gorenstein. By the following exact sequence of left Γ-modules

0 →
(
R1
0

)
→ j1(R1) =

(
R1

HomR1(M12, R1)

)
→

(
0

HomR1(M12, R1)

)
→ 0,

we have

idΓ

(
R1
0

)
≤ max

{
idΓj1(R1), idΓ

(
0

HomR1(M12, R1)

)
+ 1

}
.

Observe that for any left R1-module X, idR2(HomR1(M12, X)) ≤ idR1X since R1(M12)R2 is projective 
on both sides. Then we have idR2(HomR1(M12, R1)) ≤ idR1R1 ≤ d1. We have idR2(HomR1(M12, R1)) ≤

d2, since R2 is d2-Gorenstein. By Lemma 2.1(1), idΓ

(
0

HomR1(M12, R1)

)
= idR2(HomR1(M12, R1)) ≤

min{d1, d2}. The exact functor j1 preserves injective modules. Then we have idΓj1(R1) ≤ idR1R1 ≤ d1. 

Hence idΓ

(
R1
0

)
≤ max{d1, min{d1, d2} + 1} ≤ d. We have idΓ

(
M12
0

)
≤ d, since M12 is a finitely 

generated projective left R1-module.

By Lemma 2.1(1), idΓ

(
0
R2

)
= idR2R2 ≤ d2 ≤ d since R2 is d2-Gorenstein. Then the following exact 

sequence of Γ-modules

0 →
(
M12
0

)
→

(
M12
R2

)
→

(
0
R2

)
→ 0

implies idΓ

(
M12
R2

)
≤ d. Hence idΓΓ ≤ d since Γ =

(
R1
0

)
⊕

(
M12
R2

)
as left Γ-modules. Then Γ is 

d-Gorenstein. �
The following results estimate the selfinjective dimension of an upper triangular matrix ring in general 

case. Recall the Γt-module M∗
t from Notation 3.3.

Proposition 3.8. Let Γ be an upper triangular matrix ring of order n with each Ri Gorenstein. Let m ≥ 0
and di ≥ 0 for each i.

(1) If Γ is m-Gorenstein, then each Ri is m-Gorenstein. Moreover, pdΓt
M∗

t ≤ m − 1 if m ≥ 1 for 1 ≤ t ≤
n − 1.

(2) Assume that Ri is di-Gorenstein for 1 ≤ i ≤ n. If all bimodules Mij are finitely generated and projective 
on both sides, and each M∗

t is a projective left Γt-module for 1 ≤ t ≤ n − 1, then Γ is d-Gorenstein, 
where d = max{d1, d2, · · · , dn} + 1.

Proof. (1) We use induction on n. The case n = 2 is due to Proposition 3.7(1). Assume that n > 2. Write 

Γ =
(

Γn−1 M∗
n−1

0 Rn

)
. By Lemma 3.1, Γn−1 is Gorenstein. Then by Proposition 3.7(1), we infer that Γn−1

and Rn are m-Gorenstein, and pdΓ M∗
n−1 ≤ m − 1 if m ≥ 1. By induction, we are done.
n−1
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(2) We use induction on n. The case n = 2 is due to Proposition 3.7(2). Assume that n > 2. Write 

Γ =
(

Γn−1 M∗
n−1

0 Rn

)
. By induction, Γn−1 is d′-Gorenstein, where d′ = max{d1, d2, · · · , dn−1} + 1. Since 

M∗
n−1 is a projective left Γn−1-module and a projective right Rn-module, we have that Γ is d′′-Gorenstein 

by Proposition 3.7(2), where d′′ = max{d′, dn} if d′ �= dn, and d′′ = d′ + 1 if d′ = dn. In particular, we 
observe that d′′ ≤ max{d1, d2, · · · , dn} + 1 = d. �
4. Free EI categories

In this section, we give a new characterization of finite free EI categories in terms of the corresponding 
triangular matrix algebras.

Let k be a field. Let C be a finite category, that is, it has only finitely many morphisms, and consequently 
it has only finitely many objects. Denote by MorC the finite set of all morphisms in C . The category algebra
kC of C is defined as follows: kC =

⊕
α∈MorC

kα as a k-vector space and the product ∗ is given by the rule

α ∗ β =
{

α ◦ β, if α and β can be composed in C ;
0, otherwise.

The unit is given by 1kC =
∑

x∈ObjC
Idx, where Idx is the identity endomorphism of an object x in C .

Let C be a finite category. We recall that a module over kC is identified with a functor from C to the 
category of finite dimensional k-vector spaces; see [11, Proposition 2.1]. If C and D are two equivalent finite 
categories, then kC and kD are Morita equivalent; see [11, Proposition 2.2]. In particular, kC is Morita 
equivalent to kC0, where C0 is any skeleton of C . So we may assume that C is skeletal, that is, for any two 
distinct objects x and y in C , x is not isomorphic to y.

The category C is called a finite EI category provided that all endomorphisms in C are isomorphisms. 
In particular, HomC (x, x) = AutC (x) is a finite group for any object x in C .

In what follows, we assume that C is a finite EI category which is skeletal.
Let C have n objects with n ≥ 2. We assume that ObjC = {x1, x2, · · · , xn} satisfying HomC (xi, xj) = ∅

if i < j. Let Mij = kHomC (xj , xi). Write Ri = Mii. We observe that Ri = (Idxi
)kC (Idxi

) = kAutC (xi) is 
a group algebra.

Then Mij is naturally an Ri–Rj-bimodule, and we have a morphism of Ri–Rj-bimodules ψilj : Mil ⊗Rl

Mlj → Mij which is induced by the composition of morphisms in C .

Notation 4.1. The category algebra kC is isomorphic to the corresponding upper triangular matrix algebra 

ΓC =

⎛
⎜⎜⎜⎜⎝

R1 M12 · · · M1n
R2 · · · M2n

. . .
...

Rn

⎞
⎟⎟⎟⎟⎠. Let Γt be the algebra given by the t × t leading principal submatrix of ΓC . 

Denote the left Γt-module 

⎛
⎜⎝

M1,t+1
...

Mt,t+1

⎞
⎟⎠ by M∗

t , for 1 ≤ t ≤ n − 1.

Definition 4.2. Let C be a finite EI category with ObjC = {x1, x2, · · · , xn} satisfying HomC (xi, xj) = ∅ if 
i < j. We say that C is projective over k if each Mij = kHomC (xj , xi) is a projective left Ri-module and a 
projective right Rj-module for 1 ≤ i < j ≤ n.
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Let G be a finite group. We assume that G has a left action on a finite set X. For any x ∈ X, denote its 
stabilizer by Stab(x) = {g ∈ G | g.x = x}. The vector space kX is a natural kG-module.

The following result is well known, which can be deduced from [6, II.5 Theorem 6]. We give an elementary 
argument for completeness; compare the third paragraph of the proof of [10, Theorem 2.5].

Lemma 4.3. The kG-module kX is projective if and only if the order of each stabilizer Stab(x) is invertible 
in k.

Proof. We may assume that the action on X is transitive. Take x ∈ X, we have X 
 G/Stab(x). Then we 
have an isomorphism kX 
 k(G/Stab(x)) of kG-modules. We observe the following Maschke-type result: 
for any subgroup H of G, the canonical projection kG � k(G/H) of kG-modules splits if and only if the 
order of H is invertible in k. Then the lemma follows immediately. �

Let C be a finite EI category and α ∈ HomC (x, y). We call Lα = {g ∈ AutC (y) | g ◦ α = α} the left 
stabilizer of α, and Rα = {h ∈ AutC (x) | α ◦ h = α} the right stabilizer of α. Then we have the following 
immediate consequence of Lemma 4.3.

Corollary 4.4. Let C be a finite EI category. Then C is projective if and only if for any α ∈ MorC , the 
orders of Lα and Rα are invertible in k. �

Let C be a finite EI category. Recall from [8, Definition 2.3] that a morphism x α→ y in C is unfactorizable
if α is not an isomorphism and whenever it has a factorization as a composite x 

β→ z
γ→ y, then either β or 

γ is an isomorphism. Let x α→ y in C be an unfactorizable morphism. Then h ◦ α ◦ g is also unfactorizable 
for every h ∈ AutC (y) and every g ∈ AutC (x); see [8, Proposition 2.5]. Let x α→ y in C be a morphism 
with x �= y. Then it has a decomposition x = x0

α1→ x1
α2→ · · · αn→ xn = y with all αi unfactorizable; see [8, 

Proposition 2.6].
Following [8, Definition 2.7], we say that a finite EI category C satisfies the Unique Factorization Property 

(UFP), if whenever a non-isomorphism α has two decompositions into unfactorizable morphisms:

x = x0
α1→ x1

α2→ · · · αm→ xm = y

and

x = y0
β1→ y1

β2→ · · · βn→ yn = y,

then m = n, xi = yi, and there are hi ∈ AutC (xi), 1 ≤ i ≤ n − 1 such that β1 = h1 ◦α1, β2 = h2 ◦α2 ◦ h−1
1 , 

· · ·, βn−1 = hn−1 ◦ αn−1 ◦ h−1
n−2, βn = αn ◦ h−1

n−1.
Let C be a finite EI category. Following [9, Section 6], we say that C is a finite free EI category if it 

satisfies the UFP. This is an equivalent characterization of finite free EI categories in [8, Proposition 2.8].
Let Γ = ΓC be the corresponding upper triangular matrix algebra of C . We recall the Γt-module M∗

t

from Notation 4.1 for each 1 ≤ t ≤ n − 1. We have the following characterization of finite free EI categories.

Proposition 4.5. Let C be a finite skeletal EI category with ObjC = {x1, x2, · · · , xn} satisfying
HomC (xi, xj) = ∅ if i < j. Assume that C is projective. Then C is a free EI category if and only if 
each M∗

t is a projective left Γt-module for 1 ≤ t ≤ n − 1.

Before giving the proof of the proposition, we make some preparations.
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Definition 4.6. Let C be a finite EI category and x ∈ ObjC . We say that the EI category C is free from x if 
whenever an arbitrary non-isomorphism x α→ y in C has two decompositions x 

α1→ z1
α2→ y and x 

β1→ z2
β2→ y

with α1 and β1 unfactorizable, then z1 = z2 and there is an endomorphism h ∈ AutC (z1) such that 
β1 = h ◦ α1 and β2 = α2 ◦ h−1.

Lemma 4.7. Let C be a finite EI category. Then C is a free EI category if and only if C is free from any 
object.

Proof. The “only if” part is trivial. For the “if” part, assume that the EI category C is free from any 
object. Let x α→ y be a non-isomorphism in C . Assume that α has two decompositions into unfactorizable 
morphisms:

x = x0
α1→ x1

α2→ · · · αm→ xm = y

and

x = y0
β1→ y1

β2→ · · · βn→ yn = y.

Since C is free from x, we have x1 = y1, and there is an endomorphism h1 ∈ AutC (x1) such that β1 = h1◦α1
and αm ◦ · · ·α2 = βn ◦ · · ·β2 ◦ h1. We continue this process. We obtain that m = n, xi = yi, and there are 
hi ∈ AutC (xi), 1 ≤ i ≤ m − 1 such that β1 = h1 ◦ α1, β2 = h2 ◦ α2 ◦ h−1

1 , · · ·, βm−1 = hm−1 ◦ αm−1 ◦ h−1
m−2, 

βm = αm ◦ h−1
m−1. Then C is free. �

Let Wil ⊆ HomC (xl, xi) and Tlj ⊆ HomC (xj , xl) be subsets. Denote the subset Wil ◦ Tlj = {f ◦ g |
f ∈ Wil and g ∈ Tlj} ⊆ HomC (xj , xi).

Notation 4.8. Set Hom0
C (xj , xi) = {α ∈ HomC (xj , xi) | α is unfactorizable}. Denote M0

ij = kHom0
C (xj , xi). 

Then M0
ij is an Ri–Rj-subbimodule of Mij . Moreover,

Mij = M0
ij ⊕ (

j−1∑
l=i+1

k(HomC (xl, xi) ◦ Hom0
C (xj , xl)))

as an Ri–Rj-bimodule.

Lemma 4.9. Let C be a finite EI category with ObjC = {x1, x2, · · · , xn} satisfying HomC (xi, xj) = ∅ if 
i < j. Assume that C is free from xj. Then for any 1 ≤ i < j, we have

HomC (xj , xi) =
j−1�
l=i

(HomC (xl, xi) ◦ Hom0
C (xj , xl)),

where the right hand side is a disjoint union.

Proof. Recall that the category C is free from xj . Then we have

HomC (xl1 , xi) ◦ Hom0
C (xj , xl1) ∩ HomC (xl2 , xi) ◦ Hom0

C (xj , xl2) = φ

for l1 �= l2. Since every morphism can be decomposed as a composition of unfactorizable morphisms, we 
have the required equation. �

We observe that there is a surjective morphism
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ξilj : Mil ⊗Rl
M0

lj −→ k(HomC (xl, xi) ◦ Hom0
C (xj , xl)) (4.1)

of Ri–Rj-bimodules sending β ⊗ α to β ◦ α for i < l < j.
We recall the Γn−1-module it(A) for each 1 ≤ t ≤ n − 1 and each Rt-module A; see (2.2). Then we have 

the following natural surjective morphisms

Φi : M0
in ⊕ (

n−1⊕
l=i+1

(Mil ⊗Rl
M0

ln)) −→ Min (4.2)

of Ri–Rn-bimodules induced by ξiln for 1 ≤ i < l ≤ n − 1, and

Φ :
n−1⊕
t=1

it(M0
tn) −→ M∗

n−1 (4.3)

of Γn−1–Rn-bimodules induced by Φi for 1 ≤ i ≤ n − 1.

Lemma 4.10. Let C be a finite EI category with ObjC = {x1, x2, · · · , xn} satisfying HomC (xi, xj) = ∅ if 
i < j. Assume that C is projective. Then the above surjective morphism Φ is a projective cover of the left 
Γn−1-module M∗

n−1.

Proof. Since the category C is projective, we have that Mtn is a projective left Rt-module for each 1 ≤ t ≤
n − 1. Then each M0

tn is a projective left Rt-module, since it is a direct summand of Mtn; see Notation 4.8. 

By Proposition 2.3(1), 
n−1⊕
t=1

it(M0
tn) is a projective left Γn−1-module.

To prove that Φ is a projective cover, it suffices to show that top(
n−1⊕
t=1

it(M0
tn)) and top(M∗

n−1) are 

isomorphic. Here, we write topX = X/radX for a module X, where radX denotes the radical of X. 

Recall rad(Γn−1) =

⎛
⎜⎜⎜⎜⎝

rad(R1) M12 · · · M1,n−1
rad(R2) · · · M2,n−1

. . .
...

rad(Rn−1)

⎞
⎟⎟⎟⎟⎠. By rad(

n−1⊕
t=1

it(M0
tn)) = rad(Γn−1)(

n−1⊕
t=1

it(M0
tn)), 

we compute that the i-th component of top(
n−1⊕
t=1

it(M0
tn)) is isomorphic to M0

in/rad(Ri)M0
in. By a similar 

calculation, we have that the i-th component of top(M∗
n−1) is isomorphic to M0

in/rad(Ri)M0
in. Then we 

have the required isomorphism. �
Lemma 4.11. Let C be a finite EI category with ObjC = {x1, x2, · · · , xn} satisfying HomC (xi, xj) = ∅ if 
i < j. Assume that C is projective. Then the following are equivalent.

(1) The category C is free from xn.
(2) All the surjective morphisms Φi are isomorphisms.
(3) The surjective morphism Φ is an isomorphism.
(4) The left Γn−1-module M∗

n−1 is projective.

Proof. “(1) ⇒ (2)” Since the category C is free from xn, by Notation 4.8 and Lemma 4.9 we have

Min = M0
in ⊕ (

n−1⊕
k(HomC (xl, xi) ◦ Hom0

C (xn, xl))).

l=i+1
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Since Φi is induced by ξiln, we only need to prove that ξiln is an isomorphism for each i < l < n. Indeed, 
since C is free from xn, we have β′ ◦ α′ = β ◦ α in HomC (xl, xi) ◦ Hom0

C (xn, xl) if and only if β′ = β ◦ g
and α′ = g−1 ◦ α for some g ∈ AutC (xl). Then we have a well-defined morphism

ηiln : k(HomC (xl, xi) ◦ Hom0
C (xn, xl)) −→ Mil ⊗Rl

M0
ln

of Ri–Rn-bimodules sending β ◦α to β⊗α. It is directly verify that ξiln and ηiln are mutually inverse. Then 
we have the required isomorphisms.

“(2) ⇒ (1)” Since each Φi is an isomorphism for 1 ≤ i ≤ n − 1, we have

HomC (xl1 , xi) ◦ Hom0
C (xn, xl1) ∩ HomC (xl2 , xi) ◦ Hom0

C (xn, xl2) = φ

for i < l1 �= l2 < n, which implies that C is free from xn.
“(2) ⇔ (3)” It is obvious, since Φ is induced by Φ1, · · · , Φn−1.
“(3) ⇔ (4)” Apply Lemma 4.10. �

Proof of Proposition 4.5. Assume that C is projective. For each 1 ≤ t ≤ n − 1, we consider the full 
subcategory Ct of C with ObjCt = {x1, · · · , xt}. We observe that Ct is free from xt if and only if C is 
free from xt. Then by Lemma 4.11, we have that C is free from xt if and only if M∗

t is a projective left 
Γt-module. By Lemma 4.7, we are done. �
5. The main results

In this section, we give a necessary and sufficient condition on when the category algebra kC of a finite 
EI category C is Gorenstein, and when kC is 1-Gorenstein.

Throughout this section, when the category C is skeletal, we assume that ObjC = {x1, x2, · · · , xn}
satisfying HomC (xi, xj) = ∅ if i < j.

Proposition 5.1. Let k be a field and C be a finite EI category. Then the category algebra kC is Gorenstein 
if and only if C is projective over k.

Proof. Without loss of generality, we assume that C is skeletal. Otherwise, we take its skeleton C0, which 
is equivalent to C . We observe that C is projective if and only if C0 is projective and that kC is Gorenstein 
if and only if kC0 is Gorenstein.

Let Γ = ΓC be the corresponding upper triangular matrix algebra of C . Observe that Ri = kAutC (xi)
is a group algebra of a finite group. In particular, it is a selfinjective algebra. Then each Ri–Rj-bimodule 
Mij has finite projective dimension on both sides if and only if it is projective on both sides. Consequently, 
the statement is immediately due to Proposition 3.4. �
Example 5.2. Let G be a finite group and P a finite poset. We assume that P is a G-poset, that is, G acts 
on P by poset automorphisms. We recall that the transporter category G ∝ P is defined as follows. It has 
the same objects as P, that is, Obj(G ∝ P) = ObjP. For x, y ∈ Obj(G ∝ P), a morphism from x to y is an 
element g in G satisfying gx ≤ y. The corresponding morphism is denoted by (g; gx ≤ y). The composition 
of morphisms is given by the multiplication in G.

We observe that G ∝ P is a finite EI category. Here, we use the fact that gx ≤ x implies gx = x. 
One can check directly that if HomG∝P(x, y) �= φ, then both AutG∝P(x) and AutG∝P(y) act freely on 
HomG∝P(x, y), in particular, both the left and right stabilizers Lα and Rα of a morphism α are trivial; 
compare [12, Definition 2.1]. By Corollary 4.4, G ∝ P is projective over k. Then the category algebra 
k(G ∝ P) is Gorenstein by Proposition 5.1; compare [13, Lemma 2.3.2].
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Theorem 5.3. Let k be a field and C be a finite EI category. Then the category algebra kC is 1-Gorenstein 
if and only if C is a free EI category and projective over k.

Proof. We assume that C is skeletal. The reason is similar to the first paragraph in the proof of Theorem 5.1.
Let Γ = ΓC be the corresponding upper triangular matrix algebra of C . As mentioned above, each 

Ri = kAutC (xi) is a selfinjective algebra. In particular, a module over Ri having finite projective dimension 
is necessarily projective.

For the “if” part, assume that C is free and projective over k. Then all bimodules Mij = kHomC (xj , xi)
are finitely generated and projective on both sides. By Proposition 4.5, each M∗

t is a projective left Γt-module 
for 1 ≤ t ≤ n − 1. Then Γ is 1-Gorenstein by Proposition 3.8(2).

For the “only if” part, assume that Γ is 1-Gorenstein. Then Proposition 3.8(1) implies that each Γt is 
1-Gorenstein and each M∗

t is a projective left Γt-module for 1 ≤ t ≤ n −1. By Corollary 3.6, pdRi
Mi,t+1 < ∞

for 1 ≤ i < t + 1 ≤ n, and thus Mi,t+1 is a projective left Ri-module. By Lemma 3.1, pd(M∗
t )Rt+1 < ∞

for 1 ≤ t ≤ n − 1, since M∗
t is a projective left Γt-module. Since each Mij is a direct summand of M∗

j−1
as Rj-modules, we have pd(Mij)Rj

< ∞ for 1 ≤ i < j ≤ n, and thus Mij is a projective right Rj-module. 
Then the category C is projective. Since each M∗

t is a projective left Γt-module for 1 ≤ t ≤ n − 1, the 
category C is a free EI category by Proposition 4.5. �
Example 5.4. Let P be a finite poset. For two elements x and y, we write x < y if x ≤ y and x �= y. By a 
chain, we mean a totally ordered set. We observe that P is a free EI category if and only if for any x ≤ y

in P, the closed interval [x, y] is a chain.
Let G be a finite group and P a finite G-poset. Consider the transporter category G ∝ P. Recall that a 

morphism (g; gx ≤ y) in G ∝ P is an isomorphism if and only if gx = y. We observe that a non-isomorphism 
(g; gx < y) in G ∝ P is unfactorizable if and only if there is no object z ∈ ObjP such that gx < z < y. 
We infer by the UFP that the transporter category G ∝ P is free if and only if the category P is free. 
By Example 5.2, we have that the transporter category G ∝ P is projective. Then by Theorem 5.3, the 
category algebra k(G ∝ P) is 1-Gorenstein if and only if the poset P is free as a category. We mention that 
this result can be obtained by combining [13, Lemma 2.3.2] and [2, Proposition 2.2].

Example 5.5. (See [8, Theorem 5.3].) Let C be a finite EI category. Then the category algebra kC is 
hereditary if and only if C is a free EI category satisfying that the endomorphism groups of all objects have 
orders invertible in k.

We may assume that C is skeletal. Let Γ = ΓC be the corresponding upper triangular matrix algebra 
of C . We first claim that Γ has finite global dimension if and only if each AutC (xi) has order invertible in k. 
In this case, the category C is projective over k by Corollary 4.4. Indeed, by [4, Corollary 4.21(4)], Γ has 
finite global dimension if and only if each Ri = kAutC (xi) has finite global dimension, which is equivalent 
to that each Ri = kAutC (xi) is semi-simple. Then we have the claim.

We recall the well-known fact that a finite dimensional algebra is hereditary if and only if it is 1-Gorenstein 
with finite global dimension. Then the required result follows from the above claim and Theorem 5.3.
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